

1

D4.3 Execution environment

Prototype (Final Release)

Project Acronym DITAS

Project Title Data -intensive applications Improvement by moving

daTA and computation in mixed cloud/fog

environmentS

Project Number 731945

Instrument Collaborative Project

Start Date 01/01/2017

Duration 36 months

Thematic Priority

Website:

ICT-06-2016 Cloud Computing

http://www.ditas -project.eu

Dissemination level : Public

Work Package WP4 Execution Environment

Due Date: M30

Submission Date: 30/07/2019

Version: 1.0

Status Final for submission

Author(s): Alexandros Psychas, Achilleas Marinakis, George

Chatzikyriakos (ICCS), David García Pérez, Jose Antonio

Sanchez (ATOS), Frank Pallas , Sebastian Werner, Richard

Girke (TUB), Maya Anderson (IBM), Mattia Salnitri,

Giovanni Meroni , Pierluigi Plebani (POLIMI), Grigor

Pavlov, Bogdan Despodov, Peter Gray (CS)

Reviewer(s) Frank Pallas (TUB), Ilio Catallo (OSR)

This project has received funding by the European Unionõs Horizon 2020

research and innovation programme under grant agreement No. 731945

2

Version History

Version Date Comments, Changes, Status Authors, contributors, reviewers

01 14/04/2019 Table of contents Peter Gray (CS)

02 10/07/2019 Partners contributions ALL

03 31/07/2019 Internal Review Frank Pallas (TUB), Ilio Catallo (OSR)

04 12/08/2019 Review remarks ALL

05 12/07/2019 Final version Grigor Pavlov (CS)

3

Table of Contents

Executive Summary ... 7

1 Introduction ... 8

1.1 Structure of the Document ... 8

1.2 Glossary of Acronyms ... 9

2 Execution Environment .. 10

3 Data Movement ... 13

3.1 General Descri ption of Data Movement ... 13

3.2 Implementation of data movement within DITAS .. 13

3.3 Initial Load .. 16

3.4 Replica alignment ... 19

4 Computation Movement ... 19

4.1 General Description of Computation Movement .. 19

4.2 Implementation of Computation Movement within DITAS ... 20

5 Data monitoring ... 23

5.1 General description .. 23

5.2 Implementation of data monitoring within DITAS ... 23

6 Data Analytics .. 24

6.1 General Description of Data Analytics ... 24

6.2 Implementation of Data Analytics within DITAS .. 25

7 Components Details .. 25

7.1 Deployment Engine .. 25

7.1.1 Requirements .. 26

7.1.2 Implementation .. 27

7.2 Elasticsearch .. 27

7.2.1 Requirements .. 28

7.2.2 Implementation .. 28

7.3. Data Analytics .. 28

7.3.1 Requirements .. 28

7.3.2 Implementation .. 29

7.4 Log Analytics Service ... 29

7.4.1 Requirements .. 30

7.4.2 Implementation .. 30

7.5 SLA Manager ... 30

7.5.1 Requirements .. 30

7.5.2 Implementation .. 31

7.6 Decision System for Data and Computation Movement ... 32

7.6.1 Requirements .. 32

7.6.2 Implementation .. 33

7.7 Data Movement Enactor .. 33

7.7.1 Requirements .. 33

7.7.2 Implementation .. 33

7.8 Computation Movement Enactor ... 33

7.8.1 Requirements .. 33

4

7.8.2 Implementation .. 34

7.9 Logging Agent ... 34

7.9.1 Requirements .. 34

7.9.2 Implemen tation .. 34

7.9.3 Further Setup Details .. 35

7.9.3.1 Configuration: .. 35

7.9.3.2 API: ... 36

7.10 Request Monitor .. 37

7.10.1 Requirements .. 37

7.10.2 Implementation .. 38

7.10.3 Further Setup Details .. 38

7.11 Throughput agent ... 39

7.11.1 Requirements .. 40

7.11.2 Implementation .. 40

7.11.3 Further Setup Details .. 40

7.11.3.1 Prerequisites ... 40

7.11.3.2 Installing .. 40

7.12 CAF .. 42

7.12.1 Requirements .. 42

7.12.2 Implementation .. 42

7.13 Data access layer (DAL) .. 42

7.13.1 Requirements .. 42

7.13.2 Implementation .. 43

7.14 Policy Enforcement Engine ... 43

7.14.1 Requirements .. 44

7.14.2 Implementation .. 44

7.14.2.1 Pre-Processing ... 45

7.14.2.2 Runtime Enforcement .. 45

7.15 Identity Access Management .. 47

7.15.1 Requirements .. 48

7.15.2 Implementation .. 48

8 Conclusion ... 49

9 References ... 49

ANNEX 1: Reference Material ... 50

1 VDC Monitoring Data Overview ... 50

1.1 Generator ... 50

1.2 Data Model: ... 50

1.3 Querying VDC logging data in Elasticsearch .. 52

2 VDC Access Control Guide ... 52

2.1 Phases.. 52

2.1.1 Definition Phase .. 52

2.1.1.1 Direct Control .. 53

2.1.2 Using the DITAS Keycloak Configuration Structure .. 56

2.1.3 Runtime Phase .. 57

2.1.3.1 Alternative login method .. 57

2.1.4 Control Flow .. 58

5

2.1.4.1 Token Structure .. 59

2.1.4.2 Token Validation ... 59

2.2 End to End Example ... 60

2.3 Application Developer View .. 64

2.4 Data Owner View ... 65

List of Figures
Figure 1 Execution Environment ... 10

Figure 2 High level representation of the DITAS Execution Environment 11

Figure 3 Execution Environment architecture .. 12

Figure 4 - Data movement technology view ... 15

Figure 5 - Comparison between initial load with physical and logical copy 17

Figure 6 Hybrid copy approach ... 17

Figure 7 VDC Cluster with Application .. 21

Figure 8 VDC cluster with Deployment Engine .. 22

Figure 9 Application and Clusters .. 22

Figure 10 General Overview of the Monitoring components deployed in DITAS 23

Figure 11 Deployment Engine Example .. 26

Figure 12 Blueprint and SLA Manager in VDC ... 31

Figure 13 SLA Manager - VDM .. 31

Figure 14 Example logging agent configuration .. 36

Figure 15 Request monitor config example ... 39

Figure 16 Example configuration of the agent .. 41

Figure 17 Pre-Processing ... 45

Figure 18 Query Runtime .. 46

Figure 19 Identity Access Management ... 48

Figure 20 Add Realm .. 53

Figure 21 Add Client ... 53

Figure 22 Cl ient Configuration .. 54

Figure 23 Add Realm Roles .. 54

Figure 24 Add User .. 55

Figure 25 Example User Configuration .. 55

Figure 26 Add Role Mapping to User ... 56

Figure 27 The DITAS KeyCloak Configuration JSON. ... 56

Figure 28 Control Flow of a VDC Request. ... 58

Figure 29 Example of a JWT token provided by keycloak .. 59

Figure 30 Component Diagram ... 61

Figure 31 Landing Page ... 62

Figure 32 Keycloak Login Page .. 62

Figure 33 Landing page after successful login .. 63

Figure 34 Custom Login Form .. 63

Figure 35 Without Auth Flow .. 64

Figure 36 Example Response ... 65

6

List of Tables

Table 1 Glossary of Acronyms ... 9

Table 2 Test comparison for initial load with Physical, Logical, and Hybrid copy (time

expressed in min) ... 118

Table 3 Agent Configuration .. 125

Table 4 Flag Usage VDC Monitoring .. 9

Table 5 Color indicates that these values are usually part of the same measurement. 52

7

Executive Summary

The DITAS framework can be thought of two distinct parts, a Software

Development Kit (SDK) and an Execution Environment. The SDK has been developed

as part of WP3 so will not be discussed here. This WP focuses on the provision of an

Execution Environment c apable of computation and data movement based on

information collected by a monitoring system for tracking violations against service

level guarantees. This is achieved via the Deployment Engine, by enabling the Data

Administrator to select an appropriate blueprint and to configure the Execution

Environment across the cloud, on premise s and edge devices utilizing Kubernetes

infrastructure. Simply put, the Execution Environment is composed of the Virtual Data

Container (VDC) ð consisting of the Common Access ibility Framework (CAF), Data

Processing and Data Access Layer (DAL) ð and the Virtual Data Manager (VDM),

which is responsible for managing the life -cycle of the VDC(s) and to enact the

computation and data movement across the distributed infrastructure. The Data

Movement enactor moves data between VDCs according to a decision made by

the Decision System for Movement once data transformation by the Data Access

Layer (DAL) is complete. Computation movement refers to the movement of various

VDCs across clust ers in accordance with the required processing power determined

by the Decision System for Movement. Data Monitoring of the VDCs is performed by

three separate components, namely the Request -Monitor (RM), the Logging Agent

(LA) and the Throughput Agent (TA), while Kubernetes monitoring tools are used to

monitor resource utilization. The Data Analytics component compiles these metrics

and resource data for use by other components, such as the SLA Manager and the

Decision System for Movement.

8

1 Introduction

This deliverable refers to the latest and final installment of the DITAS Execution

Environment, including detailed information about all the components which have

been developed in accordance with the technical requirements collected in WP1

an d presented in the final architecture reported in D1.2: Final Architecture and

Validation Approach (see [D1.2]) . In this deliverable we provide general descriptions

and implementation details for each component, matched against the

requirements within the c ontext of the DITAS use -cases.

The four main objectives assigned to WP4 have been achieved by providing:

- A data movement enactor that, based on the information collected by the

monitoring system, is able to select the most suitable data movement

techniques.

- A distributed monitoring and analytics system that is able to collect

information about how the application behaves with respect to the data

management.

- An execution engine able to support the execution and the adaptation ð

through computational movement ð of the data -intensive application

distributed among on -premises and on cloud resources.

- An Auditing and Compliance framework which will enforce data security

and privacy policies across DITAS architectu re.

This report directly follows on from the previous deliverable, D4.2: Execution

Environment Prototype (First Release) (see [D4.2]) .

1.1 Structure of the Document

The document has been structured in accordance of the previous

deliverable. In Section 2 we describe the function of the Execution Environment in

relation to managing the life -cycle of the VDCs and to the main components for

computation and data movement, data monitoring and analytics. From Section 3

throug h to Section 6 we provide a general description and implementation

approach of the respective components. In Section 7, we provide details regarding

the Deployment Engine and the sub -components. A conclusion is provided in

Section 8. Additional information regarding the VDC monitoring and access control

is provided in Annex 1.

9

1.2 Glossary of Acronyms

Acronym Definition

AES Advanced Encryption Standard

API Application Programming Interface

CAF Common Accessible Framework

CME Computation Movement Enactor

DAL Data Access Layer

DA Data Analytics

DE Deployment Engine

DME Data Movement Enactor

DS4M Decision System for Movement

DUE Data Utility Evaluator

DURE Data Utility Resolution Engine

ES Elasticsearch

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

LA Logging Agent

PDU Potential Data Utility

PSES Privacy and Security Evaluation Service

REST Representational State Transfer

RM Request Monitor

SDK Software Development Kit

SLA Service Level Agreement

SLI Scalable Link Interface

SLO Service Level Objective

SSN Social Security Number

TA Throughput Agent

VDC Virtual Data Container

VDM Virtual Data Manager

VM Virtual Machina

YAML YAML Ainõt Markup Language
Table 1 Glo ssary of Acronyms

10

2 Execution Environment

The execution environment represents, together with the SDK, the

component in charge of managing the life -cycle of the VDCs while they are

running. In fact, the SDK (see [D3.3]) dictates the architecture of the VDC . Its

components are thus organized according to the generic model shown in Figure 1.

Figure 1 Execution Environment

As a consequence , the VDC embeds all the functionalities required to access

the data sources, enforce the privacy policies, and process the data according to

the exposed API represented by the CAF. The goal of the execution environment is

to make this VDC model up and run ning.

More specifically, the execution environment cannot be intended as a n

always -on running platform but as a set of components that, once a VDC is

instantiated, are created to:

- ensure that the data utility level promised by the data administrator, as

indicated in the VDC Blueprint, is fulfilled by selecting the proper data and

computation movement strategy ;

- enact s the data and computation movement actions minimizing the

downtime for the user and without experiencing any data inconsistencies

during the m ovement .

11

To this aim, a deployment engine is required to instantiate the VDC requested

by the application developers according to the instructions included in the selected

VDC Blueprint cookbook. As the same VDC Blueprint could be selected by many

applicat ion developers, each of them with different data utility requirements, it may

happen that a data or computation movement that alleviate s a problem for a VDC

could cause problems to other VDCs. In fact, all the VDCs instantiated from the

same VDC Blueprint, by definition, access to the same data sources.

To solve those possible conflicts , a Virtual Data Manager (VDM) is introduced

for each group of VDCs instantiated from a given VDC Blueprint, to control their

behavior and to decide the best data or computation movement able to maximize

the positive effects and minimize the negative effects for all managed VDCs.

Figure 2 High level representation of the DITAS Execution Environment

In more detail, Figure 2, also reported in the Final architecture deliverable

(see [D1.2]), shows the several components of VDM (also connected with the

relevant elements of the linked VDC) , which provides the following main

functionalities:

- Data and computation movement: the ability to move (or copy) the data or

the VDC processing modules on the different resources available. According

to the Fog Computin g paradigm, these resources could be running on the

premises of the data administrator or the application designer, or on the

cloud. The components involved in this task are the Decision System for

Movement (DS4M) , which is in charge of selecting the most suitable data or

computation movement, and the Data Movement Enactor (DME) and

Computation Movement Enactor (CME) which are the components that

really move the data or the computation.

12

- Data monitoring: the ability to collect informatio n about the real usage of the

VDCs controlled by a given VDM. This information is collected and stored on

an Elasticsearch repository to be processed by other components for their

specific purposes. In particular, the Data Utility Evaluator in the VDM (DUE

@VDM) is responsible for analyz ing and computing the data utility of all the

VDC s managed by the VDM in order to possibly ask for a revision of the data

utility values indicated in the VDC Blueprint.

- Data analytics: the ability to identify violations in t he behavior of the VDCs as

well as a recurring patterns. In particular, violations will drive the reaction of

the DS4M to identify the best data or computation movement. Moreover,

patterns can be used by the DS4M to better train the goal -based model

which drive s those decisions in the future.

Figure 3 Execution Environment architecture

13

3 Data Movement

3.1 General Description of Data Movement

Data movement refers to porting data that is properly filtered and

anonymized, if necessary, to the closest location possible for a consumer. The data

is kept in sync and all changes are to be pushed to the clients in an async fashion

(not realtime). The component that will do the data transformation will be Data

Access Layer (DAL), the decision when the movement should occur will be

delegated to the Decision System for Movement (DS4M), while the data movement

enactor will physically move the data between the different V DCs. Several solutions

were considered and tested. GlusterFS geo replication was one of those, where a

working test example was created, along with extending the opensource GlusterFS

REST API. However, it was agreed in the consortium that it does not meet the

requirement for data transformation, defined in WP2.

3.2 Implementation of data movement within DITAS

One of the main challenges in the data movement is represented by the

creation of the replicas on the destination. Due to the dynamic environment

represented by Fog architectures where VDC can be created and dismissed when

data movement strategy requires t o create a complete or partial replica of the

data exposed by the data owner. In particular, the following challenges must be

addressed:

1. To reduce the latency when data are provided to data consumer. In fact,

during the database replication process, the pr imary copy should not be

affected, nor should the performance of the DBMS that hosts it. Locking the

database (i.e., setting it in read only mode) will inevitably have a negative

impact on the accessing microservice.

2. To allow polyglot replication, i.e., re plication between heterogeneous

storage technologies.

3. To allow partial replication as, for privacy issue or even to reduce the amount

of data to be transferred, it might be required to hide filter out personal data

when replicating a database in an untrust ed zone, or to limit the replication

to the data really used.

4. To allow data transformation to embed some of the computation logic

required in the data analysis on the Fog (e.g., data can be aggregated).

Similarly to the previous point, data are required t o be transformed for privacy

reasons which implies full anonymization, pseudonymization or encryption.

It is also important to highlight, when addressing this challenges, that the

resources available on the fog nodes involved in the computation may vary fr om

14

few cores and few megabytes of RAM and storage for nodes closer to the edge, to

powerful nodes when considering the cloud. For this reason, the solution must be

lightweight to be depl oyed in all the configurations.

Data movement is thesis behind the fin al solution finally chosen as a storage

back -end and prototype on this basis to support geo -replication. For the other

options they did meet 3.2 Data Movement VDC/VDM support for data movement .

The data movement is implemented on the basis of several open source and

proprietary applications. The core component is complemented by the Data

Movement Enactor Agent (DME Agent), which runs at VDC level and expose s a REST

API. The other utilized backend is Additionally, SymmetricDS is used to help syn c

database updates/inserts . Rsync is used for moving filesystem -related data (object

storage, for example).

The DME Agent receive s a request for data movement by the DS4M.

Depending on the deployment, the DME Agent enact s an initial sync and will sync s

al l subsequent additions and updates to the same location. When starting the initial

sync, the DME agent receive s the destination from the DS4M and store s it locally in

order to know where to send subsequent changes. The next interaction would be

with the DA L, which receives an SQL query pointing to the exact changes that

occurred and the path where it needs to store the generated files. The DAL

generate s a Parquet file based on the received query that is then sent to a

Kubernetes volume shared between the DME Agent and the DAL. Finally the DME

Agent triggers a data movement action which syncs the file is transferred to the

correct destination DAL(s) to the other cluster, where the other DME Agent sends a

gRPC call to t he other DAL that the data movement has completed.

The technologies used by the DME agent are Python and Flask to serve the

API, combined with a spawned process which continuously check s for new inserts,

updates etc. depending on the deployment. This proce ss is also responsible for

communicating with the DAL and sending information about the data that should

be transferred. Along this thereõs a storage client which deals with the interactions

with the storage layer.

More in details, Figure 4 shows how the different technologies adopted in the

proposed solution interact to enable the data movement. The lower part consists of

Docker and GlusterFS services, in stalled in every fog node, that provide the primitives

for the management of containers and persistent volumes. On top of it Kubernetes

provides the infrastructure that groups fog nodes into a cluster. Kubernetes

manages the resources provided by Docker an d GlusterFS, which only have a scope

that is limited to the node where they are installed.

15

On each fog node, Kubernetes deploys a Pod, which has two containers

(provided by Docker), one for the DBMS and the other for SymmetricDS. In addition,

on each node , Kubernetes creates a volume (provided by GlusterFS) so that the

data of the DBMS can persist. For this reason, each volume is mounted in the data

directory of the DBMS.

Kubernetes works as a central authority that has full knowledge about which

resource s are deployed at any given time, where they are deployed, and it can be

told where they need to be deployed next. This makes the scheduling of the

resources in the distributed system very efficient, and it is coupled with the fact that

containers, being l ightweight, are fast to start (generally less than 5 seconds). For this

reason, the real limit to how fast resources are deployed, is how long the

applications in the containers take to start.

There are three types of interactions between the components in the

architecture:

- Between a SymmetricDS instance and a DBMS. This occurs locally on

every node in the system, so that SymmetricDS can read from and write

to its associated database. As the interaction occurs locally, it is not

necessary to ma ke the database accessible from remote, if deemed

unsafe.

- Between two SymmetricDS instances. When a SymmetricDS instance

detects an update on a database, it sends the update to the other

SymmetricDS instance, which will take care of inserting the update on to

its associated database. This also occurs when performing an initial load:

an instance of SymmetricDS extracts data from the primary database,

while the other instance of SymmetricDS inserts the received data into the

secondary database.

- Between the fi lesystems of two nodes. This happens when performing a

physical copy of the database: data is copied from one filesystem to the

other.

Figure 4 - Data movement technology view

16

3.3 Initial Load

Data movement requires the execution of two phases: (i) the initial load and (ii)

the subsequent maintenance of the alignment between the two copies. This

paragraph focuses on the first phase, while the alignment is discussed in the next

one.

The initial load is required every time the DME has to create a replica of the main

data set exposed by the data owner through the DAL to a location which could

improve the data utility with respect to the application developer needs, usually at

its premises. As a consequence the required data i s copied from the primary

database to the secondary one, to make the node ready to start the assigned

computation. Depending on the type of analysis and the amount of data

generated by the sensing layer, it might happen that the replica could involve a

significant quantity of data. In the literature, the initial copy is usually performed in

two possible ways:

- physical copy , which refers to directly transferring DBMS table space files from

machine to machine, at the file system level. This is a fast process (thus

addresses the first requirement listed in Sect. 3.1), since data is transferred

between the two file systems without being processed. The main

disadvantage of such an approach is its lack of flexibility as it allows only full

replicas and no transfor mation (required in our case for supporting

encryption and (pseudo)anonymization).

- logical copy , which refers to the mechanism of extracting data from the

primary copy and importing it onto the secondary copy using queries; In this

case, also a partial re plica is possible as well as data transformation among

the replicas to allow (pseudo)anonymization. The main drawback concerns

the time required to create the copy which, based on our experiments,

increases exponentially with respect to the size of the dat abase (see Figure

5).

17

Figure 5 - Comparison between initial load with physical and logical copy

To exploit both the advantages of the two approaches, we propose in DITAS a

hybrid approach. The hybrid approach (see figure 6) consists of four phases:

1. A DBMS (of the same technology as the technology of the secondary DBMS)

is deployed on a temporary node near the primary node (or, if capable, on

the same node).

2. The (parti tion of the) database to be replicated is copied into the new DBMS

by using a logical copy. We call this step local logical copy.

3. The newly created database is then moved onto the secondary machine by

using a physical copy. We call this step remote logical copy.

4. The secondary DBMS is started on the secondary node, where it can access

the n ewly copied database.

Figure 6 Hybrid copy approach

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

01:40:48

01:55:12

02:09:36

02:24:00

100MB 500MB 1GB 5GB 10GB

logical remote physical remote

18

In this way, the logical copy in phase 2, by calling the DAL (specifically the

Privacy Enforcement Engine) allows to filter and to transform the data, and to

translate the quer ies for a DBMS that is different from the primary DBMS. This

operation takes less time than it would take to perform remotely onto the secondary

node since it is performed on a node that is near (or local to) the primary node. The

logical copy is performed by reading the primary copy and it does not need to lock

the primary copy while doing so.

During a logical copy, data is transformed and inserted (or written) onto the

secondary DBMS. Such operations, which both occur on the temporary node,

require a cons iderable amount of computational power. Therefore, the higher the

computation capability of the temporary node, the faster the overall creation of the

secondary copy will be.

The physical copy from the temporary machine to the secondary machine

permits a f ast transfer of data using, for example, optimizations offered by

technologies used to transfer files remotely.

The overhead of this approach is given by the time necessary to deploy the

temporary machine and create extra resources (e.g., a temporary DBMS) . However,

some technologies (e.g., Docker and Kubernetes, described later in this paper)

permit to deploy these necessary resources in a few tens of seconds, which is a

negligible amount of time if compared to the overall benefit provided by the

proposed approach.

Similarly, the overhead given by the transmission of data between the

primary database and the temporary one is negligible since the temporary machine

should be created near the primary one (or be connected to the primary one with

a fast network connection).

As shown in Table 12, the speed of the physical copy cannot be beaten by

any other approach. Conversely, the hybrid approach demonstrates to be a good

alternative which provides a fast replica creation while maintaining the ability to

transform the data between the replicas as requested by privacy needs.

DB Size Physical Hybrid Logical

~100 MB 0.50 1.90 1.28

~500MB 0.87 3.57 4.60

~1 GB 1.52 5.95 8.80

~5 GB 5.85 22.83 53.30

~10 GB 11-57 48.40 150.15
Table 2 Test comparison for initial load with Physical, Logical, and Hybrid copy (time expressed in min)

19

3.4 Replica alignment

The data is kept in sync and all changes are to be pushed to the clients with

a lazy primary -copy replication . The primary -copy synchronization strategy consists

in broadcasting the updates on the primary copy to all the secondary copies. Such

approach li mits the type of operation supported by the secondaries, since

modification can be executed on the primary copy only. However, such approach

fits the purpose of most fog computing applications where the data sources, such

as sensors, feed a database that i s used to distribute data. Nevertheless, our

approach can be easily adapted to the update -anywhere strategy by

implementing conflict resolution management. This way, when two concurrent

writes occur on the same data in two different nodes, it is possible t o specify how to

resolve this conflict. For example, it is possible to give greater priority to a specific

node, so that when such a conflict occurs, the w rites on this node always win.

With lazy replication, updates are asynchronously propagated after

transactions commit to the database. We opted for such strategy since the main

objective of the paper consists in improving the quality of services, such as latency,

of the database for the data requested by the user. An eager approach would

increase the upd ate time since before the commit of every transaction the update

have to be broadcast to all secondary copies. The price to pay is a weaker

consistency since the secondary will not be aligned with the primary copy for an

amount of time called replication l ag . Yet, the choice of a lazy primary -copy

replication guarantees a session consistency, since the updates are performed only

on the primary copy.

The component that will do the data transformation will be Data Access

Layer (DAL), the decision when the mov ement should occur will be delegated to

the Decision System for movement (DS4M), while the data movement enactor will

physically move the da ta between the different VDCs.

4 Computation Movement

4.1 General Description of Computation Movement

At any moment, in any cluster used as D ITAS Runtime Environment, there are

several computation units running:

- DALs: Several of them might be running to serve data and perform

transformation, filtering or anonymization of data

- VDCs: Several of them, one per concre te blueprint, performs necessarily

centralized processing of the data served by the different DALs

- VDM: Only one of them exists per abstract blueprint monitoring and

managing the different VDCs and DALs in the different clusters

20

All of these units require some computational power to execute, as

processing and transformation of data can be a CPU - and I/O -consuming process,

especially when executed over a significant amount of d ata. Since the resources in

some clusters can be limited and some other cluster might be available with more

computational resources, some of th ese elements can be moved between clusters

when their performance is considered to be less than optimal.

Data M ovement deals with the movement of data and data sources but

since a DAL is bound to this data sources, it needs to be moved or copied when a

data movement is enacted, so the movement of this computational unit is done in

the data movement workflow.

There is just one VDM per abstract blueprint and by design it run s in the default

cluster. It is not move d as it doesnõt do any processing of data and itõs not

considered to be particularly CPU- or I/O -intensive.

We are left with a computational unit that can b e moved around when its

performance degrades: VDCs.

4.2 Implementation of Computation Movement within DITAS

CIn the light of above considerations, omputation movement in DITAS refers

to the movement of VDCs across different clusters which are available to i ts abstract

blueprint.

The computation movement is done with the collaboration of several

components:

- Monitoring: performance metrics are gathered from the different VDCs

- Data Analytics: Offers an API to retrieve the monitoring metrics on a given

period and with several aggregations.

- SLA Manager: Queries the Data Analytics service to periodically evaluate

QoS constraints and detect violations of thresholds defined in the bl ueprint.

- Decision System for Movement: Based on potential violations reported by the

SLA Manager , the additional monitoring information available, and the

available resources and clusters present in the COOKBOOK_APPENDIX

section of the blueprint, the Decis ion System for Movement may decide to

move a VDC from one cluster to another.

- Computation Movement Enactor: Receives orders from the Decision System

for Movement and coordinates the creation or modification of the VDCs in

the source and target clusters

- Dep loyment Engine: If an instance of the VDC does not exist in the target

cluster, the Computation Movement Enactor will instruct the Deployment

Engine to create it.

21

This will make even though this procedure make s sure that there is a VDC

running in the targe t cluster , there is still a challenge that needs to be addressed:

Basically, t here is a pipeline of data going from/to application -> VDC -> DAL -> Data

source . When moving one of the pieces, this pipeline has to continue without or ð in

the worst case ð with minimal disruption. To ensure this , we execute the following

workflow to move components across clusters:

- Letõs say we have a VDC òvdc1ó running in a cluster òcluster1ó and there is a

second cluster òcluster2ó available.

Figure 7 VDC Initial configuration

- The Computation Movement Enactor receives a movement request from the

Decision System for Movement to move the VDC with identifier òvdc1ó from

cluster òcluster1ó to cluster òcluster2ó

- If an instance of òvdc1ó is not running on òcluster2ó, the Computation

Movement Enactor will instruct the Deployment Engine to create such an

Cluster1 Cluster2

Deployment

Engine
Application

Request
Response

VDM VDC1

22

instance.

Figure 8 VDC instantiation in cluster 2

- If it was already created, it will instruct the VDC òvdc1ó in cluster òcluster2ó to

start serving requests.

- Once created or if it was already running, the Computation Movement

Enactor will order the VDC òvdc1ó in òcluster1ó to enter into redirection mode.

In this mode, the VDC will not serve any request, but it will answer with a 307

code instructing the request ing application to use the URL to the VDC copy

running in òcluster2ó. That way, applications using the VDC will know that

thereõs a new URL to send their requests to.

Figure 9 Original VDC in redirect mode

Cluster1 Cluster2

Deployment

Engine
Application

VDC1 VDM VDC1

Create(vdc1, cluster2) Deploy

Cluster1 Cluster2

Deployment

Engine
Application

VDC1 VDM VDC1

RedirectMode

1. Request 2. Redirect

3. Request

23

5 Data monitoring

DITAS provides access to data sources through VDCs. Both the application

using the VDC and the data source can be located outside of DITAS. The main

component s that can be monitored are , thus, the VDC and its auxiliary

components.

5.1 General description

The DITAS monitoring approach relies heavily the Sidecar -Pattern 1 that

provided several components to observe a VDC processing unit. We use this pattern

because we can ð as the Data Administrator is free to select any kind of VDC

implementation ð not provide a unified framework for every possible process running

in a do cker container.

All the DITAS monitoring components send data to a DITAS -internal

Elasticsearch. Elasticsearch 2 is a well -established monitoring data store.

Figure 10 General Overview of the Monitoring components deployed in DITAS

5.2 Implementation of data monitoring within DITAS

The aforementioned sidecars are separated into three components. The

Request -Monitor (RM), the Logging Agent (LA) and the Throughput Agent (TA), see

Figure 7.

Each of these fulfils a specific role for monitoring the VDC through its lifetime.

The RM is the most important component fo r observing the VDC. It is implemented

as a reverse HTTP proxy that intercepts all traffic to and from a VDC processing

component. On this basis, the RM can transparently track response times, failure

rates, method distribution , etc . The RM also terminates the SSL traffic which means it

can also read the body of all responses. It will not disclose this information , but it can

run analytics on all traffic to inform data movement decisions.

1 https://www.oreilly.com/library/view/designing -distributed -systems/9781491983638/ch02.html
2 https://www.elastic.co/products/elasticsearch

https://www.oreilly.com/library/view/designing-distributed-systems/9781491983638/ch02.html
https://www.elastic.co/products/elasticsearch

24

The TA has a similar objective : Its purpose is to observe all incomin g and

outgoing TCP traffic that a VDC processing unit produces. This information can be

used to automatically figure out what data source is mainly used by a VDC

processing unit and therefore help to predict if movement of that data source would

significan tly impact the overall performance.

Lastly, the LA is a small microservices that offers any Data Administrator to write

custom data to the Elasticsearch. Normally, a developer would need to implement

the Elasticsearch API and to also understand the documen t schema used by DITAS.

Using the LA , a developer can use a simplified REST-API to write data to Elasticsearch.

All the DITAS specific logic , like adding references to the blueprint, vdc and so on is

performed by the agent. Thus, easing the life of the dev eloper.

Besides these sidecars, DITAS also use s common Kubernetes monitoring

solutions to observe CPU -, m emory - and I / O-load of all VDC components. This data

is also stored in the Elasticsearch .

The Data Analytics component can then use all the gathered i nformation to

compile the necessary information for decision critical components.

6 Data Analytics

The Data Analytics component provide s an interface to metrics and resource

data needed by other DITAS components. Based on th ese data, components such

as the DS4M and SLA manager can make decisions.

6.1 General Description of Data Analytics

The data analytics component is built using Python and Flask on top of Ubuntu.

It provides a RESTful API which is split into two different calls: metrics and resources.

The metrics API call uses an Elasticsearch (ES) instance as its backend. In the context

of DITAS, this ES instance holds the data generated by the Data Monitoring

component. The Elasticsea rch python library is used to create requests to ES. The

output is then sanitized and presented in a convenient way for other components

to interpret.

The resources API calls , in turn, rely on the Kubernetes API to get the current

usage generated by the in frastructure. Since the storage is network -based and uses

GlusterFS, the Heketi API (https://github.com/heketi/heketi) is used to get the data

regarding the amount of free space on the cluster. Along with the usage calls,

information about the total resour ces defined for the infrastructure is provided.

The code is available in the Data Analytics repo on GitHub :

https://github.com/DITAS -Project/data -analytics

25

6.2 Implementation of Data Analytics within DITAS

The SLA Manager relies on the Data Analytics component, asking for SL I

values and checking them against their SLOs. In case some of them are not fulfilled,

it will inform the Decision System for Data Movement of a violation, passing the

broken SLO and SLI values that produced the violation.

The DS4M will call the data analytics, then the data analytics will provide the

information about the information on the data sources. Such information will be

used to understand if a data source can be moved to a new node.

7 Components Details

7.1 Deploy ment Engine

The deployment engine is the component in charge of creating and

configuring the infrastructures in which the VDCs are going to be deployed and then

deploy ing the DALs, VDCs and VDMs on them. To do so, it receives an intermediary

blueprint with the set of resources which the Data Owner, Data Administrator and

Data User have made available to run the VDC. The structure of th ese resource

descriptions is described in D3.3 (see [D3.3]) in the COOKBOOK_APPENDIX section .

In particular, resources are here grouped by infrastructures, each one of them

forming a Kubernetes cluster. Regarding that, we distinguish two types of

infrastructures:

- Cloud or dynamic ones: The information the component receives are virtual

machine s and persistent disk s that the deployment engine needs to

instantiate from a cloud provider. Once instantiated, it will install kubernetes

over them and form a cluster.

- Edge or static ones: The information the component receives are machines,

physical or virtual, which are al ready created and configured and they form

a kubernetes cluster. In this case, the deployment engine must receive the

configuration file needed to access and manage the cluster.

- Once the clusters are created and configured, the deployment engine will

deplo y the DALs, VDM and the first VDC instance for the abstract blueprint. If

the same abstract blueprint is received, it will create another VDC instance

managed by the same VDM.

26

Figure 11 Deployment Engine Example

Figure 8 shows an example of a deployment. In this example, the blueprint

specifies three clusters to use. The first two are going to be created on cloud

resources: K1 is formed by three virtual machines with data disks attached to them.

K2 is formed by two virtua l machines with three data disks and K3 is a Kubernetes

cluster which already exists in the Edge. When the blueprint is received, the

deployment engine will instantiate the virtual machines and data disks on K1 and

K2 and subsequently install and configure Kubernetes over them. It will then use one

of the three clusters to deploy the VDM and the first VDC.

7.1.1 Requirements

- B4.1 - The DITAS Platform should be able to rebuild or move the entire

production infrastructure from bare metal: The deployment engine is able to

create arbitrary infrastructures and deploy any kind of software over it

through Kubernetes deployments. With this capability, we are able to

reproduce any kind of production environment.

- B4.2 - The DITAS Platform componen ts should have source control repository:

The source code of the deployment engine is available at

https://github.com/DITAS -Project/deployment -engine

- B4.3 - The DITAS Platform should be able to deploy the components on time:

Creating and configuring the cl usters is an operation that may take time but

itõs only run once per abstract blueprint. Once they are created, instances of

the VDC are automatedly deployed and running in a few seconds.

27

- T4.2 - Run the VDCs on isolated independent environments at once for

benchmarking: The deployment engine is able to create and deploy VDCs

on demand so it can be used easily for benchmarking purposes.

- T4.3 - Run VDC òequivalentó for architecture backup scenarios or for fault

tolerance at architectural level: As B4.1, the d eployment engine can create

arbitrary software deployment scenarios, which allows it to be used to create

backup or fault tolerance infrastructures replicating the production ones.

- T4.8 - Being able to create application both at the Edge and Cloud: The

dep loyment engine is able to deploy arbitrary software over kubernetes

clusters that can be running either at the Edge or the Cloud.

- T4.9 - Being able to add Spark nodes: As with the previous requirement, the

deployment engine is able to deploy any kind of so ftware as long as it is

containerized. As such, it can deploy Spark instances to any kubernetes

cluster.

7.1.2 Implementation

The deployment engine is written in Go and is available at

https://github.com/DITAS -Project/deployment -engine

It requires a MongoDB instance running and Ansible to be installed in the same

machine and offers the following operations:

- Blueprint (VDC) deployment: When it receives an abstract blueprint, it checks

if there are VDCs associated to that blueprint already running. If thereõs one,

it will deploy a new VDC over the existing clusters. If not , it will:

- Instantiate the virtual machines of the clusters defined in the blueprint

- Configure a Kubernetes on these clu sters once instantiated

- Deploy a VDM on the default cluster

- Deploy a VDC on the default cluster

- VDC copy: Once a VDC is running in a cluster, a copy of it can be deployed

in another cluster. This functionality is mainly used by the Computation

Movement Ena ctor

- Data source deployment: As part of the Data Movement process, d ata

source s need to be created in the clusters to which data is moved. This

operation create s an empty d ata source in a target cluster.

- DAL deployment: The next step in the Data Movement is the creation of a

DAL in the target cluster. This operation deploys it and configures it to use the

d ata source s created with the previous operation.

7.2 Elasticsearch

DITAS uses Elasticsearch (ES) in two ways, one to store monitoring data from

the DITAS runtime and second to store all DITAS blueprints. Both purposes use

separate Elasticsearch cluster s.

28

Elasticsearch is a search engine developed in Java. It is capable of delivering

full-text -search through a distributed collection of documents with an HTTP web

interface.

7.2.1 Requirements

- T4.14 - Metadata describing the behavior of the VDC as well as th e movement

of data/computation must be available: Elasticsearch enables reliable and

scalable storage of monitoring data, therefore it is a good match to store the

VDC behavior in an available way.

- T4.15 - Metrics and measurements regarding various system qualities must be

available to make decisions about violations of requirements and SLAs: ES

functions as a storage backend to most monitoring systems in DITAS.

7.2.2 Implementation

For implementation DITAS uses the community edition of ES in version 2.4 an d 6.8.

These version differences are manly due to the different starting points of each

component that use Elasticsearch . Both versions are still supported and updated.

Version 2.4 is only a few months older as 6.0 but difference in the API mean it would

require significant implementation overhead to migrate all components to the same

Version. Both are configured with sensible defaults and deployed once per DITAS

instance. They can be scaled based on the size and usage of the particular DITAS

instance.

7.3. Data Analytics

The Data Analytics (DA) aims to provide easy access to desired metrics or

resource data to other DITAS components.

7.3.1 Requirements

- T4.13 - Aggregates additional information, generated by the operation of

different DITAS components, as Data/Computation Movement Enactor,

Decision System for data and computation Movement, SLA Manager,

Throughput agent and Logging agent : This is accomplished with the use of

Elasticsearch , which aggregates this data.

- T4.13 - Provides an interf ace to query the various data sources that comprise

this information and does additional processing and refining where

necessary : The interface is provided via a REST API and the data is

transformed as necessary within the DA component

- T4.13 - Its queries integrate key QoS metrics usedin the operations of other

components such as the SLA manager and Decision System for data and

29

computation movement : The metrics are stored in the ES and are provided

upon request to the other components

- T4.13 - The Data anal ytics API is placed inside a separate container in a

Kubernetes environment with its own endpoint and internal DNS, which allows

communication with other DITAS components : The DA API has been

developed in a way that makes it instantly Dockerizable and will be run in a

Kubernetes environment

- T4.13 - Data Analytics provides an API which translates requests into

Elasticsearch queries and outputs the results in accordance to a format

suitable for use by other DITAS modules : Requests are received by the REST

API based on Flask and they are formatted to fit a predefined ElasticSearch

query template, which is then communicated via the ElasticSearch API, the

response is again sent back in a format that matches the required one.

- T4.13 - Metadata describing the resour ces that are made available by the

data administrator and the application designer must be available. Such

metadata must describe the resources available (in terms of space, memory,

cpus, etc.) , the location , and the type of data that can be memorized: This

data is exposed via the resources API , where also the usage of these

resources is available.

7.3.2 Implementation

The implementation is a REST API written in Python using the Flask framework. It

provides a simplified input interface, which is then translated to an Elasticsearch

query. The ES response is then further formatted and sent back as JSON.

Since the DA uses t hree additional APIs to get the needed data, it relies on the

Blueprint and configuration files to retrieve their endpoints. The data is then fetched

when a request is sent to the DA API.

The DA is deployed once and there is no expected need to scale it, as it can

easily handle the amount of requests sent to it. A Docker container is provided and

the DA is to be run in a Kubernetes environment.

7.4 Log Analytics Service

The Log Analytics Service provides the capabilities necessary to examine logs

in the cl usters created by the Deployment Engine. That way, the DITAS operator has

a global view about whatõs happening in the clusters created by its blueprints and

he can investigate log errors when any cluster or VDC instance is not behaving as

expected.

30

7.4.1 Requirements

- T4.15 - Metrics and measurements regarding various system qualities must be

available to make decisions about violations of requirements and SLAs:

Although itõs not related to any automatic process, the Log Analytics Service

provide s further information to the DITAS operator that can be analyzed to

improve VDC executions.

7.4.2 Implementation

The service is based on Logstash 3, and Elasticsearch :

- Each Kubernetes cluster created by the Deployment Engine has an instance

of Fluentd installed and configured to send each global Kubernetes, Docker

and each containerõs logs to the Elasticsearch instance running on the

facilities of the DITAS Operator.

- The DITAS Operator can analyze th ese logs using tools such as Kibana in order

to monitor the health s tatus of each cluster.

7.5 SLA Manager

The SLA Manager is a component running inside each instance of a VDC and

is in charge of validating that the QoS constraints defined in the operations of the

Blueprint are met. To do so, it will get the necessary metr ics from the Data Analytics

component at the VDM and evaluate each constraint. If one of them fails, it will

send a violation notification to the Decision System for Movement specifying which

rule has failed and which metrics provoked the failure.

7.5.1 Requirements

- T4.4 - The DITAS SLA Manager must be able to run on Edge and on Cloud

independently: The SLA Manager is lightweight enough to be able to run on

almost any hardware configuration considerable for DITAS .

- T4.5 - The DITAS SLA Manager will offer an API for configuration and QoS

definition: The SLA manager will read the QoS parameters needed to form

SLAs from the blueprint at startup time. However, as an alternative, it also

offers a REST API that can be used to manage SLAs if needed .

- T4.6 - The SLA Manager will notify via a system of any violations of the rules

that trigger a movement action: The SLA Manager informs the Decision

System for Movement about any violation that it detects.

3 https://www.elastic.co/products/logstash

https://www.elastic.co/products/logstash
https://www.elastic.co/
https://www.fluentd.org/
https://www.elastic.co/products/kibana

31

7.5.2 Implementation

This component is written in Go and its source code is available at

https://github.com/DITAS -Project/SLALite

It doesnõt have any extra requirements to run as it will only save the SLAs in

memory.

When the component starts, it will read the Blueprint that is provided to all

components by the Deployment Engine. From this, it will create an SLA per operation

using the information of the ABSTRACT_PROPERTIES section of the blueprint.

Figure 12 SLAs creation from blueprint data

It will then check the SLAs periodically, asking the Data Analytics component

about metric values and evaluating the constraints defined in each SLA. In case of

a violation, it will send a REST request to the Decision System for Movement with the

information about the violation.

Figure 13 SLA assessment and violation notification

VDC

SLA Manager

SLAs

VDM

Data Analytics

Decision

System for

Movement

1. Check

2. GetMetrics

3. Violation

Blueprint

VDC

SLA Manager

SLAs

32

7.6 Decision System for Data and Computation Movement

The Decision System for Data and Computation movement (DS4M)

component is in charge of analyzing requirements of each application using the

data sources and the computation power managed by DITAS and ð in case of

requirements being violated ð of deciding on the best data or computation

movement to be enacted. In particular, when a violation of the requirements of an

application is notified by the S LA manager comp onent, the DS4M analyses the goal

model (see [D2.2, D2.3]) of the application, find the best data and computation

movement based on a strategy defined by the application designer and instruct s

the data movement enactor to enact the chosen movement. DS4M is part of the

Virtual Data Manager (VDM) and it is instantiated once for each class of blueprint.

7.6.1 Requirements

- T4.18 The DS4M must provide an interface to collect the violations detected

by the SLA manager. The DS4M interface can be used by the SLA manager

to collect violations detected.

- T4.19 The DS4M will create a well formed JSON file with the data and

computat ion movement to be enacted and deliver it respectively to the data

movement enactor and computation movement enactor. The DS4M create s

json files with the instruction of the data or computation movements to be

sent to the data movement enactor and computa tion movement enactor ,

respectively .

- EU1.F8 As application developer, I want the framework to be smart enough

to perform computation (data transformation, etc.) in the agreed time (SLA)

overcoming any incidents. So that the developer has only to focus on

business logic. The DS4M select s the best data or computation movement

to overcome possible incidents (violation of requirements) and restore such

requirements satisfaction.

- EU1.F9 As application developer, I want the framework to provide the needed

data under the parameters defined in the SLA. So that I don't have to

implement any extra mechanism to fulfil the application data needs. The

DS4M receive s violation information also for data quality, therefore a problem

on the quality of data can be solved wit h a transformation encapsulated in

a data movement.

- EU1.UC1 As application designer, I want the framework to be able to fallback

to a different d ata source when the primary one fails. So that the error

probability of a data call decreases. The DS4M select s the best data source

to fall back, by selecting the best data movement to be enacted.

33

7.6.2 Implementation

DS4M source code is available at https://github.com/DITAS -Project/decision -

system-for-data -and -computation -movement . It is implemented mainly using java

as a rest service. When the service starts, it reads the blueprints assigned to the VDM

and starts listening for violations (sent by the SLA manager component) or additions

of new VDCs (sent by the deployment engine component).

7.7 Data Movement Enactor

The Data Movement Enactor facilitates the porting of data that is properly

filtered and anonymized, if necessary, to the closest location possible for a

consumer. The data is kept in sync and all changes are to be pushed to the clients.

7.7.1 Requirements

- T4.10 The Data Movement Enactor will offer an API to allow the decision

system to instruct it on which data movement to be executed, the target and

the source, and the transformation on the data to be executed . The DME API

exposes an API c all which indicates a start of the data movement, this is then

further relayed to the DAL component, which does the transformation and

creates the required files in the storage layer.

7.7.2 Implementation

The DME Agent is accessed via a REST API written in Python and using Flask.

Since it resides in the source VDC, the directly contacts DME Agent API and specifies

the target and data transformation needed. The logic behind this procedure is

explained in section 3.2 of this document.

The source code is available at https://github.com/DITAS -

Project/DataMovementEnactor.

7.8 Computation Movement Enactor

The Computation Movement Enactor receives requests from the Decision

System for Movement to move VDC instances between clusters. It collaborates with

the Deployment Engine and the existing VDCs themselves to accomplish that, so

that all requests arrive at the target VDC from the moment itõs requested.

7.8.1 Requirements

- T4.11 - The Computation Movement Enactor will offer an API to allow the

decision system to instruct it on which computation movement to be execute:

the target and the source of the movement: The Computation Movement

34

Enactor offers a REST API that is invoked by the Decision System for

Movement.

7.8.2 Implementation

The component is implemented in Go and the source code is available at

https://github.com/DITAS -Project/computation -movement -enact or.

The Computation Movement Enactor offers a REST API that is invoked by the

Decision System for Movement when a VDC needs to be move d to another cluster.

That means that a new copy of the VDC needs to be created, if it does not exist yet ,

and all further requests must be redirected to it. How this is implemented is described

in section 3.4 of this document.

7.9 Logging Agent

The logging agent is a small service that is deployed alongside the VDC so

that it and other VDC components can use a unified interface to report logging

information. See the Appendix for details about recorded data.

7.9.1 Requirements

- T4.8 - Being able to create application both at the Edge and Cloud: The

Logging Agent is as lightweight as possible. The static binary can be compiled

for any architecture and the running component requires less few resources

- T4.14 - Metadata describing the behavior of the VDC as well as the movement

of data/computation must be available: The Logging Agent enables the DA

to report measurements and VDC behavior from each internal VDC

component , something that cannot be otherwise captured in DITAS , as each

component is implemented by a different party using different programming

languages and frameworks.

- T4.15 - Metrics and measurements regarding various system qualities must be

available to make decisions about violations of requirements and SLAs: The

Logging Agent provides a common interface for all components inside a

VDC to rep ort measurements

7.9.2 Implementation

The agent is built as a standalone service and only needs the connection to

the logging database. The source code is available at https://github.com/DITAS -

Project/VDC -Logging -Agent .

All other interactions are optional and done through the offered API.

35

7.9.3 Further Setup Details

For installation two options exist: building and running it locally or using the

docker approach.

For local testing and building for this purpose, follow the following steps:

install dependencies (only needs to be done once):

compile CGO_ENABLED=0 GOOS=linux go build -a -- installsuffix cgo -- ldflags="- w - s - X

main.Build=$(git rev- parse -- short HEAD)" - o log-agnt

For the docker approach, the provided dockerfile can be used to build a

running artifact as a Docker container.

build t he docker container:

docker build - t ditas/logging - agent - f Dockerfile.artifact

Attach the docker container to a VDC or other microservice -like component:

docker run - v ./logging.json:/opt/blueprint/logging.json -- pid=container:<APPID> - p

8484:8484 ditas/logging- agent

Here <APPID> must be the container ID of the application to be observed.

The port at 8484 is used for the logging REST interface and only needs to be exposed

if it is intended to log data of VD C services originating from outside the attached

container. Also, refer to the Configuration section for information about the

logging.json -config file.

7.9.3.1 Configuration :

To configure the agent, the following values can be specified in a JSON file:

Key Type Desc ription

ElasticSearchURL String The URL that all aggregated data is sent to

VDCName String the name used to store the information under

Endpoint String the address used as the service address in zipkin

ZipkinEndpoint String the address of the zipkin collector

tracing Boolean indicates if tracing should be enabled

Port Int port of the agent

verbose Boolean indicate if the agent should use verbose logging

(recommended for debugging)

Table 3 Agent Configuration

36

An example file could look like this:

{

 "Port":8484,

 "ElasticSearchURL":"http://127.0.0.1:9200",

 "VDCName":"tubvdc",

 "Endpoint":"http://127.0.0.1:8080",

 "verbose":false

}

Figure 14 Example logging agent configuration

Alternatively, users can use flags with the same n ame to configure the agent.

7.9.3.2 API:

PUT /v1 /trace

registeres a span in zipkin or updates an existing one

{

 "traceid" : "5e27c67030932221" ,

 "spanid" : "38357d8f309b379d" ,

 "operation" : "mysql-query" ,

 "message" : "select * from Patients"

}

POST /v1 /close

closes a span in zipkin

{

 "traceid" : "5e27c67030932221" ,

 "spanid" : "38357d8f309b379d" ,

 "operation" : "mysql-query" ,

 "message" : "select * from Patients"

}

37

POST/v1 /log

forwards a log message to elasticsearch, automatically adding type and index

information

{

 "timestamp" : "2018-02-19T12:32:32Z",

 "value" : "[INFO] [VDCController] [8] some logging message"

}

POST /v1 /meter

forwards a log message to elasticsearch, automatically adding type and index

informat ion

{

 "timestamp" : "2018-02-19T12:32:32Z",

 "value" : 9231,

 "unit": "byte per second" ,

 "kind": "payload size"

}

7.10 Request Monitor

The VDC Request Monitor is one of the DITAS monitoring sidecars used to

observe the behavior of VDCs.

The Request Monitor is implemented as a reverse proxy with HTTP processing

to collect data about incoming and outgoing request and to enable tracing and

transport encryption as well as access control. See the Appendix for details about

recorded data.

7.10.1 Requirements

- T4.8 - Being able to create application both at the Edge and Cloud: The

Request Monitor is as lightweight as possible. The proxy can be compiled and

run on any platform in the cloud or on the edge.

- T4.14 - Metadata describing the behavior of the VDC as well as the movement

of data/computation must be available: The Request Monitor intercept s all

traffic sent by or received by the client so that complex data utility

38

information can be computed without relying on the VDC developer. Each

interaction with an application can be captured for further processing.

- T4.15 - Metrics and measurements regard ing various system qualities must be

available to make decisions about violations of requirements and SLAs: The

Request Monitor sends all connection data between an application and a

VDC to the monitoring database. This data can be used by the SLA to make

decisions about current violations.

- T4.16 - The VDC should expose data that is compliant with privacy policies, if

privacy attributes are defined for the VDC: The Request Monitor can

automatically add transport encryption to any VDC, and thus ensuring that

no private data can be observed from unauthorized parties. Furthermore, the

RM implements the OAuth Protocol an d can automatically reject requests

that do not provide the needed credentials to access data.

7.10.2 Implementation

The request monitor is des igned as a standalone GO executable that is

configured through a single config file. The source code is available at

https://github.com/DITAS -Project/VDC -Request -Monitor . Interaction with other

components is minimal. The monitor needs to communicate with t he logging

database, the tracing endpoint and the identity management system. However,

each of these systems offers a standard REST API. All other interactions only happen

between the VDC and the client. As the monitor is implement ed as a HTTP reverse

proxy, no component needs to know or care about these interaction s. Everything

that is needed is that the deployment engine sets up the port in such a way that the

request monitor receives all the traffic intended for the VDC.

7.10.3 Further Setup Details

To configure the agent, the following values can be specified in a JSON file:

- ElasticSearchURL => The URL that all aggregated data is sent to

- VDCName => the Name used to store the information under

- Endpoint => the address of the service that traffic is forwarded to

- Opentracing => indicates if an open tracing header should be set on every

incoming request and if the frames should be sent to Zipkin

- ZipkinEndpoint => the address of the Zipkin collector

- UseACME => use letsEncrypt to generate certificates for https

- UseSelfSigned => let the agent generate self -signed certificates or use the

ones provided in the config directory (same as the location of the config file).

The files the agent is looking for are cert.pem and key.pem.

- ForwardTraffic => allow the agent to forward all incoming and outgoing data

to a secondary service for, e.g., auditing.

39

- ExchangeReporterURL => if the ForwardTraffic is enabled, send the data to

this location.

- verbose => boolean to indicate if the agent sho uld use verbose logging

(recommended for debugging)

- Authentication => boolean to indicate if the agent should check

authentication headers

- jwkURL => URL to get keys for JWT validation

An example file could look like this:

{

 "Endpoint":"http://127.0.0.1 :8080",

 "ElasticSearchURL":"http://127.0.0.1:9200",

 "VDCName":"tubvdc",

 "ZipkinEndpoint": http://localhost:9411,

 "Opentracing":false,

 "UseSelfSigned":true,

 "ForwardTraffic":false,

 "verbose":false,

 "Authentication": true,

 "jwkURL": "http://127.0.0.1:8080/auth/realms/vdc_dummy/protocol/openid -

connect/certs"

}

Figure 15 Request monitor config example

To use the monitor it can either be built from source using golang 1.12 or by

using the docker image (ditas/vdc -request -monitor:production) that DITAS provides.

To build the agent, checkout the repos itory at https://github.com/DITAS -

Project/VDC -Request -Mon itor and then build it using the following command:

CGO_ENABLED=0 GOOS=linux go build - a -- installsuffix cgo -- ldflags="- w -s - X

main.Build=$(git rev- parse -- short HEAD)" - o request- monitor.

7.11 Throughput agent

The throughput agent is a small monitoring sidecar similar to the request

monitor. Its main purpose is to passively observe the traffic in a VDC pod. The

resulting information can be used to determine what connection and thus what

data source ma inly impacts request and response times. This informat ion therefore

40

can be valuable for making automatic data movement decisions. See the

Appendix for details about recorded data.

7.11.1 Requirements

- T4.8 - Being able to create application both at the Edge and Cloud: The

Throughput Agent is as lightweight as possible. The agent is part of the DITAS

Base Image and can therefore be deployed on any runtime that is supported

by DITAS.

- T4.14 - Metadata describing the behavior of the VDC as well as the movement

of data/computation must be availabl e: The Throughput Agent is able to

observe all incoming and outgoing connections of the VDC. It collects the

number of requests as well as the total amount of bytes sen t and received to

the monitoring database.

- T4.15 - Metrics and measurements regarding va rious system qualities must be

available to make decisions about violations of requirements and SLAs: The

Data provided by the Throughput Agent can be used to calculate how much

data a VDC is able to read in a given amou nt of time, thus allowing the S LA

to make decisions on these types of requirements.

7.11.2 Implementation

The agent is designed as a standalone GO executable that is configured

through a single config file. The source code is available at

https://github.com/DITAS -Project/VDC -Throughput -Agent . Interaction with other

components is minimal. The agent only needs to communicate with the logging

database. The agent also relies on kubernetes to place the agent into the same

pod as the components that need to be monitored so that the agent can observe

the connections.

7.11.3 Further Setup Details

7.11.3.1 Prerequisites

To use this component, at least GO 1.10 , dep 0.5 and pktstat are needed.

To install the GO lang tools go to: https://golang.org/do c/install

7.11.3.2 Installing

For installation of the throughput agent , two options exist: building and

running it locally or using the docker approach. For local testing and building for this

purpose, follow the following steps:

install dependencies (onl y needs to be done once):

compile

https://github.com/dleonard0/pktstat

41

CGO_ENABLED=0 GOOS=linux go build - a -- installsuffix cgo -- ldflags="- w -s - X

main.Build=$(git rev- parse -- short HEAD)" - o thr-agnt

to run locally:

./thr - agnt

For the docker approach, the provided dockerfile can be used to build a

running artifact as a Docker container.

build the docker container:

docker build - t ditas/throughput - agent - f Dockerfile.artifact

Attach the docker container to a VDC or other microse rvice -like component:

docker run - v ./traffic.json:/opt/blueprint/traffic.json -- pid=container:<APPID>

ditas/throughput - agent

Here <APPID> must be the container ID of the application to be observed.

Also, refer to the Configuration section for information about the traffic.json -config

file.

7.11.3.3 Configuration

To configure the agent, the following values can be specified in a JSON file:

- ElasticSearchURL => The URL that all aggregated data is sent to

- VDCName => the name used to store the information under

- windowTime => the time window that is used to aggregate connections in

seconds

- ignore => List of ip:port -data that should not be aggregated or reported

- components => map to name connections, e.g., *.:3306:"d atabase server.

- verbose => boolean to indicate if the agent should use verbose logging

(recommended for debugging)

An example file could look like this:

Figure 16 Example configuration of the agent

Alternatively, flags with the same name can be used to configure the agent.

42

7.12 CAF

Every VDC exposes its functionality to applications as REST API methods, as

described in the VDC blueprint. The implementation of the concrete CAF is up to

the data administrator, and according to what is best suited to the implementation

of the processing layer of the VDC. For instance, in the OSR usecase, we have

implemented the VDC processing layer in Scala with Spark, so it is quite natural to

implement the VDC using the Play application framewo rk. However, if the

processing layer is implemented using NodeRed, then the CAF could be

implemented using an HTTP Node -Red node, like in the IDEKO usecase

implementation.

7.12.1 Requirements

- The CAF satisfies requirement T3.15: make the access to data in the Cloud,

edge and fog transparent to the application, overcoming limitations and

notions such as running location, location of data, bandwidth.

7.12.2 Implementation

Example implementations of VDCs with CAF implemented using the Play

framework can be found at https://github.com/DITAS -Project/ehealth -spark-vdc -

with -dal .

7.13 Data access layer (DAL)

As described in deliverables D1.2 (see [D1.2]) and D3.3 (see [D3.3]) , the Data

Access Layer (DAL) is an element of a VDC, whose role is to expose the data

provided by the Data Administrator of the DITAS -EE infrastructure without violating

privacy and security constraints. The DAL communicates with the Policy

Enforcement Engine in order to rewrite the queries it receives into a compliant query.

DAL is used both as part of the data flow of a VDC, and it participates in data

movement.

It is responsible for querying the data source in a secure way and returning

only data compliant with privacy policies. In addition, it allows accessing the data

with the same API, whether th e data is encrypted or not, or whether it is anonymized,

based on whether the DAL is deployed ð in trusted or untrusted zone. See DAL in the

component diagram in Figure 1.

7.13.1 Requirements

- The VDC processing layer should call the DAL and pass to it the authorization

token and the privacy properties, so that the DAL can verify the validity of the

token and apply privacy policies using the Policy Enforcement Engine.

https://github.com/DITAS-Project/ehealth-spark-vdc-with-dal

43

- The Policy Enforcement Engine should return to DAL all the encryption

properties that are n eeded to read/write data by DAL in the appropriate

privacy zone.

- The initial DAL should be deployed by the data administrator near his data

stores or on DITAS platform, and it can be òmovedó (created in a new place)

to a new location by the deployment agen t based on the instructions of the

DME as part of the data movement process.

- T3.15 - Make the access to data in the Cloud, edge and fog transparent to

the application, overcoming limitations and notions such as running location,

location of data, bandwidth : DAL helps satisfy the requirement by exposing a

uniform API, no matter where the data is

7.13.2 Implementation

DAL exposes a gRPC API both for the data access path and for the data

movement path. Weõve implemented example DALs both for the OSR and the

IDEKO usecase, and they can be found in the DITAS repository on GitHub (ehealth -

spark-vdc -with -dal 4 & ideko -use-case 5). The gRPC impl ementation includes a

protobuf [PROTO] definition of the DAL API including both its methods and the

messages it can receive and send. The DAL should support its movement between

different privacy zones, if allowed by the data administrator. If it does, the n it should

have different flows based on the privacy zone, in which it runs. For example, if it

runs in the private zone then no encryption properties are needed when fetching

the data, and all data is available. On the other hand, if it runs in the publi c zone,

then encryption properties are to be set based on the Enforcement Engine, and

some queries might need to be changed because the data available is encrypted

and anonymized.

7.14 Policy Enforcement Engine

As described in deliverable D2.3 [see (D2.3)] , the policy enforcement engine

is part of the compliance framework for Spark runtime. Data access policies, access

purposes and data subject consents are defined in the Data Policy and Consent

Manager (DPCM). The VDC that is implemented with Apache Spark uses the

enforcement engine to transform Spark SQL queries to queries that return only

compliant data. In addition, the enforcement engine transforms the query to

include anonymization and it creates encryption properties for creating encrypted

data, where mandated by privacy policies that are defined in DPCM. It is useful both

when data is accessed from the application and when sanitized data is created for

data movement. The enforcement engine runs in two separate phases - the pre -

4 https://github.com/DITAS -Project/ehealth -spark-vdc -with -dal/tree/master/DAL
5 https:/ /github.com/DITAS -Project/ideko -use-case/tree/master/dal

https://github.com/DITAS-Project/ehealth-spark-vdc-with-dal/tree/master/DAL
https://github.com/DITAS-Project/ideko-use-case/tree/master/dal

44

processing phase and the runtime phase. The pre -processing phase is a periodic

process which fetches policies, purposes and consents and creates an intermediate

representation, which is used in the runtime phase to improve performance and

availability. The runtime phase is when an application accesses data via the VDC.

Since the DAL has been added to the architecture, there is a change from previous

versions in how the VDC accesses the enforcemen t engine. Now the DAL is the one

accessing the Enforcement Engine in order to rewrite the data access query into

one that accesses only data that is allowed by governance policies.

In addition, the Enforcement Engine returns to the DAL the list of encrypti on

properties that the DAL should use in order to access encrypted data. The properties

include the KeyManagement class and KeyManagemant instance URL, which is the

URL of HashiCorp Vault [VAULT] that manages keys.

7.14.1 Requirements

- The DAL should pass t o the Enforcement Engine the authorization token and

the privacy properties, so that the Enforcement Engine can verify the validity

of the token and apply privacy policies and so that it can return the

appropriate encryption configuration to the DAL.

- T4.16 - The VDC should expose data that is compliant with privacy policies, if

privacy attributes are defined for the VDC : the Enforcement Engine satisfies

this requirement for the VDC by enforcing privacy policies .

7.14.2 Implementation

The policy Enforcement Engine, as it has already been described in D2.3 (see

[D2.3]) , is part of the compliance framework for Spark runtime. Data access policies,

access purposes and data subject consents are defined in the Data Policy and

Consent Manager (DPCM). The VDC that is implemented with Apache Spark uses

the enforcement engine to transform Spark SQL queries to queries that return only

compliant data.

The Enforcement Engine is a sidecar of the DAL (see Sidecar pattern). It

exposes a method for SQL query transformation that receives an access purpose,

requestor, request attributes and the data access SQL query. The method returns

the rewritten SQL query together with the defi nition of the tables with the

intermediate representation , which are created during the Pre -Processing and will

be explained later. The rewritten query runs on the original data tables joined with

the intermediate representation, to get compliant data. In addition, the

Enforcement Engine returns to DAL the encryption properties needed in order to run

the query in the privacy zone, in which the DAL is located. If the DAL is located in a

public zone, then there might be a policy that the data should be encry pted, so the

DAL has to know how to fetch the relevant keys from the Key Management service.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

45

7.14.2.1 Pre-Processing

In order to improve the performance and the availability of the runtime

enforcement, a periodic process, whose period can be configurable i n VDC

blueprint, fetches policies, purposes and consents, and computes an intermediate

representation that is persisted in parallel to the original data.

The intermediate representation consists of two parts: the rules and the

clauses. The rules are saved in-memory inside the Enforcement Engine, whereas the

clauses are persisted alongside the data, for which enforcement is needed.

Figure 17 Pre-Processing

7.14.2.2 Runtime Enforcement

At runtime, when an application accesses the VDC, the VDC sends a Spark

SQL query to the Enforcement Engine and the request context, e.g., purpose,

requester identity , etc . The Enforcement Engine rewrites the query into a query over

compliant data, where rules depend on the actual values inside the clauses tables.

When the VDC receives the rewritten query, it runs it on the original data joined with

the clauses tables, to get compliant data. No access to external systems, such as

DPCM or profiles systems, is needed during runtime, since a ll data needed for the

enforcement decision should already reside in the clauses tables near the data.

46

Figure 18 Query Runtime

The Enforcement Engine exposes a REST API to the DAL for the runtime

enforcement.

/rewrite -sql-query

The method that rewrites a SQL query according to privacy rules.

Input parameters:

SQL Query Spark SQL query that the VDC has to run for

executing the called operation

Access Purpose The purpose of access to the data

Access Token with Requestor Attributes JWT token with Attributes of the requestor, such

as his location

 Output:

SQL Query Re-written Spark SQL query that allows access

to compliant data only

/get -crypto -session-properties that gets encryption properties for reading data.

Input parameters:

Access Token JWT token

Privacy zone Public/private zone

Output:

47

Encryption Properties Properties map for setting the Hadoop

properties of the Spark session when running

the Spark SQL rewritten query, so that

decryption can happen.

/get -crypto -dataset -properties that gets encryption properties for writing data.

Input parameters:

Access Token JWT token

Privacy zone Public/private zone

Schema Dataset schema

Output:

Encryption Properties Properties map for setting the Hadoop

properties of the Spark session when running

the Spark SQL rewritten query, so that

encryption can happen.

Includes which columns should be encrypted

with which keys, that are saved in Key

Management system.

7.15 Identity Access Management

In DITAS we employ an Identity and Access Management (IAM) System for

enabling access control for VDC requests. The system is used to enable the Data

Administrator (DA) to define and manage access to the data source. It is important

to the DA t o control the access to critical data shared through DITAS and only the

DA has sufficient knowledge about the attributes necessary for deciding on the

granting of data access. The DA is therefore responsible for defining the attributes

that define authoriz ed users when sharing a data source. The DITAS IAM is then

responsible to handle the software interaction for access control.

48

Figure 19 Identity Access Management

7.15.1 Requirements

- Controllable by the DA - the IAM needs to off er the DA at least one interface

to manage users and roles

- Compatible to CAF - the IAM needs to use a protocol compatible to the DITAS

CAF

7.15.2 Implementation

In DITAS we use a custom KeyCloak (https://www.keycloak.org/) installation.

KeyCloak Implements the OpenID Connect Standard that is used throughout DITAS

to enforce access control. It uses JSON Web Tokens to represent user access.

KeyCloak offers a Management Interface that a DA can use to manage users, roles

and so forth. It also can be used to allow new users to register. We also created a

custom KeyCloak management API that DITAS can use to automatically manage

users on behalf of a DA.

This model enforces access control with the most control for the DA , since the

DA is in charge of deci ding which user has what access.

Alternative approaches like service token would move this control to the application

developer and it is therefore up the DA if he is fine with that risk. If so , the processing

core of the VDC and the DAL need to be written accordingly. However , it is not

recommended to use both the DITAS Keyclaok and a different approach for the

same data source.

49

The c ustom Keycloak installation can be found at: https://github.com/DITAS -

Project/DITAS-KeyCloak . We also offer a managem ent command line interface at:

https://github.com/DITAS -Project/KeycloakConfigClient .

For more information on how to use KeyCloak within DITAS see the ANNEX 1.

8 Conclusion

This deliverable has discussed the main characteristics of the execution

environment which represents one of the two main key elements of the DITAS

solution. In particular, the VDM components are presented in details which specific

reference to the way in which the data and computation movements are

supported as well as the data analytics. In particular, the data movement

approach, which is based on a hybrid approach which mediates between the

speed provided by the physical copy and the flexibility of the l ogical copy has been

presented as a suitable solution for addressing the typical requirement in Fog

environments .

9 References

[D1.2] Deliverable D1.2 of DITAS project: òFinal DITAS architecture and validation

approachó. É DITAS Consortium. January 2019.

[D2.3] Deliverable D2.3 of DITAS project: òDITAS Data Management ð Final releaseó.

© DITAS Consortium. July 2019.

[D3.3] Deliverable D3.3 of DITAS Project: òData Virtualization SDK prototype (final

version)ó É DITAS Consortium. June 2019.

[D4.2] Deliverable D 4.2 of DITAS Project: òD4.2 Execution Enviro nment Prototype (First

Release)ó É DITAS Consortium. June 2018.

[PROTO] òGoogle Protocol Buffers: Google's Data Interchange Format",

Documentation and open source release, April 2016, [online] Avail able:

http://code.google.com/p/protobuf/ .

[VAULT] Hashicorp vault: Enterprise pricing, packages & features. https://www.

hashicorp.com/products/vault/enterprise. (Accessed on 06/13/2019)

50

ANNEX 1: Reference Material

1 VDC Monitoring Data Overview

To test or view example data generated by the three VDC monitoring agents you

can check out https://github.com/DITAS -Project/TUBMonitoringDataGenerator. Use

go build to build the tool.

Flag Usage:

--VDCName string VDCName to use (default "tubvdc")

--blueprint string the blueprint to use (default "resources/concrete_blueprint_doctor.json")

--elastic string used to define the elasticURL (default "http://localhost:9200")

--events int number of events generated and added to the elasticsearch; runs indefinitely if the
value is negative (default 100)

--gen int sets the internal generator to use (default 1)

--pause bool pause between events (default true)

--wt duration mean wait time in sec between events (default 10s)

Table 4 Flag Usage VDC Monitoring

1.1 Generator

- 0: Random (will generate Random values for each metric)

- 1: Violation Free, generates a random value within the bounds of the

blueprint

- 2: Timed Violation, generates valid values within the bounds of the blueprint

until a fixed delay. Afterwards, all metrics will be 0. Usage:

./TUBMonitoringDataGenerator --gen 2 20s

1.2 Data Model:

VDC-Instance -ID: Each VDC -Instance will get a unique name (generated)

that groups all monitored data for that instance.

BluePrint-ID: Each VDC also has a blueprint -ID (provided) that is also used to

group all data from a specific bluePrint

Both IDs are combined to generate the IndexName as follows: BluePrint-ID-

VDC-Instance -ID-YEAR-MONTH-DAY

The IndexName is needed t o access data in Elasticsearch.

Each Index contains documents that can contain the following fields:

